You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
7 November 2018Performance evaluation of NMF methods with different divergence metrics for landmine detection in GPR
Ground-penetrating radar (GPR) is a non-destructive geophysical tool used to detect buried objects. However, detection of shallowly buried objects such as landmines is a challenging problem due to the inherent presence of the clutter. Various methods based on subspace decomposition or multiresolution analysis are proposed for clutter removal in GPR images. The recently proposed subspace based non-negative matrix factorization (NMF) method is similar to the other well-known image decomposition methods however it has different constraints such as all the elements in the decomposed matrices have to be non-negative which more appropriate for our problem. The method is based on the low rank approximation of the GPR image. Several divergence metrics/cost functions have been proposed in literature for NMF as a convergence criteria such as Euclidean (EUC) distance, Kullback- Leibler (KL) divergence and Itakura-Saito (IS) divergence. These metrics affect the performance of NMF during the clutter removal process. To find the most suitable divergence metric in NMF for GPR clutter removal problem, a simulated dataset is constructed by using gprMax free software. The GPR images in our constructed simulated dataset have also the ground-truth images and represent challenging scenarios. Therefore the quantitative results are given in addition to visual results which is hard to obtain in the real GPR measurements. For the quantitative analysis, the peak signal-to-noise ratio (PSNR) and the structural similarity (SSIM) performance metrics are used since the ground-truth images are available. Both the quantitative and visual results show that NMF with KL divergence outperform the other divergence metrics for GPR imaging.
Deniz Kumlu andIsin Erer
"Performance evaluation of NMF methods with different divergence metrics for landmine detection in GPR", Proc. SPIE 10794, Target and Background Signatures IV, 107940I (7 November 2018); https://doi.org/10.1117/12.2324405
The alert did not successfully save. Please try again later.
Deniz Kumlu, Isin Erer, "Performance evaluation of NMF methods with different divergence metrics for landmine detection in GPR," Proc. SPIE 10794, Target and Background Signatures IV, 107940I (7 November 2018); https://doi.org/10.1117/12.2324405