You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
9 August 2018A novel rotation invariance hashing network for fast remote sensing image retrieval
With the increasing amount of high-resolution remote sensing images, large-scale remote sensing image retrieval(RSIR) becomes more and more significant and has attracted great attention. Traditional image retrieval methods generally use hand-crafted features which are not only time-consuming but also always get poor performance. Deep learning recently achieves remarkable performance due to its powerful ability to learn high-level semantic features, so researchers attempt to take advantage of features derived from Convolutional Neural Networks(CNNs) in RSIR. But remote sensing image is different from natural scene image, its background is more complicated with a lot of noise and existing deep learning method didn’t handle this well. Both the speed and the accuracy achieve unsatisfactory performance. In this paper, we propose a rotation invariant hashing network that represents an image as a binary hash code to retrieve image faster while considering the rotation invariance of the same target. The results of the experiments on some available remote sensing datasets show that our method is effective and outperforms than other features which is usually used in RSIR.
The alert did not successfully save. Please try again later.
Chang Zou, Showhong Wan, Peiquan Jin, Xingyue Li, "A novel rotation invariance hashing network for fast remote sensing image retrieval," Proc. SPIE 10806, Tenth International Conference on Digital Image Processing (ICDIP 2018), 1080652 (9 August 2018); https://doi.org/10.1117/12.2503185