You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
25 October 2018Raman spectroscopic characterization of interlayer coupling in twisted (2+2) and (3+3) layered graphenes
Multilayer graphene (MLG) produced by micro-mechanical exfoliation can usually be stacked layer by layer in a Bernal way through van der Waals coupling. During the exfoliation, a partial bilayer graphene (BLG) is folded onto the BLG flake itself to form the exfoliated twisted (2+2)LG. In this paper, we measured Raman spectra of a few pieces of twisted (2+2)LGs with different twisted angles in back-scattering at room temperature with a HR Evolution micro-Raman system. The modes on both sides of G mode were measured to be a signature to distinguish the twisted angle and determine the layer number in twisted (2+2)LGs. The further research was extended to a twisted (3+3)LG and some results obtained in the twisted (2+2)LGs were confirmed. These results provide an applicable approach to probe the interlayer coupling in twisted graphenes and thus benefit the future research studies on their fundamental physics and potential applications.