Presentation
4 March 2019 Spectral based tissue classification and ultrastructural characterization using ISOCT (Conference Presentation)
Aya Eid, James A. Winkelmann, Graham Spicer, Luay M. Almassalha, Vadim Backman
Author Affiliations +
Abstract
Alterations to nanoscale structures, lymphatics, and microvasculature are early hallmarks of neoplasia as well as a variety of other diseases. Unfortunately, nanoscale alterations and microvasculature function, such as oxygen saturation, cannot be probed by histology. Furthermore, properly evaluating lymphatic and microvasculature organization can be challenging with histological slices. Optical Coherence Tomography (OCT) offers a promising noninvasive solution to evaluating these biomarkers in 3D in vivo. OCT has shown the ability to provide 3D maps of vasculature with flow rate and blood oxygenation, as well as, lymphatic organization with a resolution on the order of 1-10 microns. Our group has established Inverse Spectroscopic OCT (ISOCT), which measures nanoscale mass density tissue fluctuations and can distinguish between histologically normal cancerous and noncancerous tissue. However, the most influential underlying assumption that allows the distinction between subdiffractional structural alterations in tissue is that the region of interest (ROI) includes a homogenous tissue type with similar scattering and absorption properties. Therefore, the highly absorbing blood and low scattering lymphatics must be excluded from analysis. Traditional OCT techniques to isolate vasculature and its spectra require timely repetitive scanning protocols, and the commonly utilized near infrared operating bandwidths require vessel-like filters to locate lymphatics. Herein we show how vasculature location and spectra can be extracted with a single visible OCT scan. Additionally, we demonstrate the high image contrast from visible OCT allows lymphatic location to be well defined. Finally, we show ultrastructural metrics fall within physiologically reasonable ranges after excluding vasculature and lymphatics from the ROI.
Conference Presentation
© (2019) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Aya Eid, James A. Winkelmann, Graham Spicer, Luay M. Almassalha, and Vadim Backman "Spectral based tissue classification and ultrastructural characterization using ISOCT (Conference Presentation)", Proc. SPIE 10888, Biophysics, Biology and Biophotonics IV: the Crossroads, 108880D (4 March 2019); https://doi.org/10.1117/12.2513825
Advertisement
Advertisement
KEYWORDS
Lymphatic system

Optical coherence tomography

Tissues

Blood

Scattering

Tissue optics

Visible radiation

Back to Top