Presentation
4 March 2019 Ultra-sensitive label free imaging below the resolution limit (Conference Presentation)
Author Affiliations +
Abstract
Almost all known nanoscopy methods rely upon the contrast created by fluorescent labels attached to the object of interest. This causes limitations on their applicability to in vivo imaging. A new label-free spectral encoding of spatial frequency (SESF) approach to nanoscale probing of three-dimensional structures has been developed. It has been demonstrated that spatial frequencies, encoded with optical wavelengths, can be passed though the optical system independent of the resolution of the imaging system. As a result information about small size structures can be detected even using a low resolution imaging system. Different versions of the SESF imaging have been published [1-7], including a novel contrast mechanism for high resolution imaging [1], real time nano-sensitive imaging [2], reconstruction the axial (along depth) spatial frequency profiles for each point with nano-sensitivity to structural changes [3], and the adaptation of the SESF approach to depth resolving imaging [4,5]. Recently the SESF approach has been applied to break the diffraction limit and dramatically improve resolution [6,7]. Here we present further development of the SESF approach including correlation mapping SESF imaging. Both results of numerical simulation and preliminary experimental results, including biological objects, will be presented. [1] Alexandrov, et.al., Opt. Lett. 36 3323 (2011). [2] Alexandrov, et.al., Opt. Express 20 (8) 9203 (2012). [3] Alexandrov, et.al., Appl. Phys. Let., 101 033702 (2012). [4] Uttam, et.al., Opt. Express, 21, 7488 (2013). [5] Alexandrov, et.al., Nanoscale, 6, 3545 (2014). [6] Alexandrov, et.al., Sci. Rep., 5, doi: 10.1038/srep13274 (2015). [7] Alexandrov, et.al., J. Biophotonics, https://doi.org/10.1002/jbio.201700385 (2018).
Conference Presentation
© (2019) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Sergey A. Alexandrov, James McGrath, Colin Sheppard, Francesca Boccafoschi, Cinzia Giannini, Teresa Sibillano, Hrebesh Subhash, Josh Hogan, and Martin Leahy "Ultra-sensitive label free imaging below the resolution limit (Conference Presentation)", Proc. SPIE 10891, Nanoscale Imaging, Sensing, and Actuation for Biomedical Applications XVI, 1089106 (4 March 2019); https://doi.org/10.1117/12.2502479
Advertisement
Advertisement
KEYWORDS
Image resolution

Real time imaging

Spatial frequencies

Imaging systems

Spatial resolution

Computer programming

Diffraction

Back to Top