You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
1 May 1989Efficient Utilization Of Aperture And Detector By Optimal Coding
Performance for several apertures is presented for a number of Rayleigh discrimination tasks with signal and background exactly specified. Performance is defined as the squared signal-to-noise ratio of an ideal observer determined from statistical decision theory. The conclusions of Wagner, Brown, and Metz (1981) are shown to hold for different source-pair orientations and some other well-known (but non-ideal) figures of merit. When the background is assumed to be a known constant, and the source width and separation are also known, the performance of a simple open aperture increases as the aperture is enlarged. For a known source width a complex aperture can be designed which will give performance superior to a large open aperture for these simple discrimination tasks. For any of these apertures to be clinically relevant, performance comparisons over a wider range of clinically realistic tasks, including signal and object variability, must be considered.
The alert did not successfully save. Please try again later.
K. J. Myers, R . F. Wagner, D. G. Brown, H. H. Barrett, "Efficient Utilization Of Aperture And Detector By Optimal Coding," Proc. SPIE 1090, Medical Imaging III: Image Formation, (1 May 1989); https://doi.org/10.1117/12.953201