You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
4 March 2019Dispersionless time-lens with an integrated silicon nitride ring resonator
The observation of ultrafast signals by expanding them to a time scale that enables the measurement with conventional high-speed systems is of considerable interest in many applications. Usually, a time-lens can be used for this purpose. Like a lens in optics, a time lens expands the signal in time. This can be accomplished by a strong first order dispersion. However, higher order dispersion leads to a distortion of the signal and an integration of elements with a strong first order dispersion is challenging. Here we present a dispersion-less time-lens with an integrated ring resonator. Several replicas of a single input signal are generated by a microring resonator having a free spectral range (FSR) much less than the bandwidth of the input signal. These copies are then subjected to a coupled Mach-Zehnder intensity modulator (MZM) system driven by a single sinusoidal radio frequency (RF) signal to generate copies of the input spectrum. In the time-domain this can be seen as a multiplication of the input signal with a sinc-pulse sequence. The sinc-pulse sequence is tunable by the single sinusoidal radio frequency. By choosing a suitable radio frequency, the signal waveform can be sampled at a different position for each copy, so that an expanded waveform with a configurable stretching factor determined by the input RF can be achieved. This time lens system can be fully integrated into a photonic integrated circuit and requires neither an optical source nor a dispersive medium. In first preliminary experiments we present a sampling rate of around 110 GSa/s.
The alert did not successfully save. Please try again later.
Arijit Misra, Stefan Preußler, Linjie Zhou, Thomas Schneider, "Dispersionless time-lens with an integrated silicon nitride ring resonator," Proc. SPIE 10921, Integrated Optics: Devices, Materials, and Technologies XXIII, 109211O (4 March 2019); https://doi.org/10.1117/12.2506793