You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
4 March 2019Low-loss coupling interfaces between InP-based emitters and Si3N4 photonic integrated circuits
Silicon photonics technology has emerged as a viable solution for the demonstration of highly functional Photonic Integrated Circuits (PICs) relying on the mixture of light sources with silicon based waveguides. However, the incorporation of the laser sources in all PICs has always been at the center of industrial and research attention. To date, the vast majority of such merging schemes focus on either flip chip bonding of external III-V dies or hybrid-integration techniques that feature very good optical performance at the expense of fabrication cost. The next evolution of PICs, however will rely on the monolithic integration of the III-V lasers on the silicon substrates for simultaneous optimization of cost and circuit performance. In this work two low-loss coupling interface schemes are presented for efficient light transition between monolithically integrated InP-based laser sources and a Si3N4 passive circuitry through an intermediate waveguiding layer. For both coupling interface schemes, the light is butt-coupled from the III-V source into an intermediate waveguide that in turn couples the light into the final Si3N4 waveguide platform utilizing an evanescent coupling scheme. Two approaches are investigated towards this direction: The first approach is based on a purely stoichiometric Si3N4 waveguide, while the second one is based on a Si-Rich Nitride (SRN) acting as the intermediate layer. In both cases 2D-FDTD simulations verified by 3D-FDTD simulation results reveal total transition losses of less than 1.7dB for the pure-Si3N4 and less than 1dB for the SRN approach.
The alert did not successfully save. Please try again later.
D. Chatzitheocharis, D. Ketzaki, G. Dabos, K. Vyrsokinos, "Low-loss coupling interfaces between InP-based emitters and Si3N4 photonic integrated circuits," Proc. SPIE 10923, Silicon Photonics XIV, 109231J (4 March 2019); https://doi.org/10.1117/12.2508517