You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
15 March 2019MRI-based synthetic CT generation using deep convolutional neural network
We propose a learning method to generate synthetic CT (sCT) image for MRI-only radiation treatment planning. The proposed method integrated a dense-block concept into a cycle-generative adversarial network (cycle-GAN) framework, which is named as dense-cycle-GAN in this study. Compared with GAN, the cycle-GAN includes an inverse transformation between CT (ground truth) and sCT, which could further constrain the learning model. A 2.5D fully convolution neural network (FCN) with dense-block was introduced in generator to enable end-to-end transformation. A FCN is used in discriminator to urge the generator’s sCT to be similar with the ground-truth CT images. The well-trained model was used to generate the sCT of a new MRI. This proposed algorithm was evaluated using 14 patients’ data with both MRI and CT images. The mean absolute error (MAE), peak signal-to-noise ratio (PSNR) and normalized cross correlation (NCC) indexes were used to quantify the correction accuracy of the prediction algorithm. Overall, the MAE, PSNR and NCC were 60.9−11.7 HU, 24.6±0.9 dB, and 0.96±0.01. We have developed a novel deep learning-based method to generate sCT with a high accuracy. The proposed method makes the sCT comparable to that of the planning CT. With further evaluation and clinical implementation, this method could be a useful tool for MRI-based radiation treatment planning and attenuation correction in a PET/MRI scanner.