You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
13 March 2019Registration based detection and quantification of intracranial aneurysm growth
As growing aneurysms are very likely to rupture, features to detect and quantify the growth are needed in order to assess rupture risk. So far cross-sectional features like maximum dome size were used, however, independent analysis of baseline and follow-up aneurysm shapes may bias these features and thereby conceal the often subtle changes of aneurysm morphology. We propose to detect and quantify aneurysm growth using shape coregistration, composed of globally optimal rigid registration, followed by non-rigid warping of baseline mesh to the follow-up mesh. Aneurysm isolation algorithm is used to constrain the registration to parent vessels and to aneurysm dome in the rigid and non-rigid registration steps, respectively. Based on the analysis of the obtained deformation field, two novel morphologic features were proposed, namely the relative differential surface area and median path length, normalized by maximum dome size. The morphological features were extracted and studied on a CTA image dataset of 20 patients, each containing one unruptured intracranial saccular aneurysm (maximal dome diameters were from 1.4 to 12.2 mm). For a baseline performance comparison, five cross-sectional features were also extracted and their relative change computed. The two novel registration based features performed best as demonstrated by lowest p-values (<0.003) obtained by Mann-Whitney U-test and highest area under the curve (>0.89) obtained from a ROC analysis. The proposed differential features are inherently longitudinal, taking into consideration baseline and follow-up aneurysm shape information at once, and seem to enable an interventional neuroradiologist to differentiate better between low- and high-rupture-risk aneurysms.
The alert did not successfully save. Please try again later.
Žiga Bizjak, Tim Jerman, Boštjan Likar, Franjo Pernuš, Aichi Chien, Žiga Špiclin, "Registration based detection and quantification of intracranial aneurysm growth," Proc. SPIE 10950, Medical Imaging 2019: Computer-Aided Diagnosis, 1095007 (13 March 2019); https://doi.org/10.1117/12.2512781