You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
14 March 2019The U-net and its impact to medical imaging (Conference Presentation)
The U-net has become the predominant choice when facing any medical image segmentation task. This is due to its high performance in many different medical domains. In this talk, I will introduce the U-net, and I will present three projects from DeepMind Health Research that use the U-net to address different challenges. The first project, a collaboration with University College London Hospital, deals with the challenging task of the precise segmentation of radiosensitive head and neck anatomy in CT scans, an essential input for radiotherapy planning. The second project, together with Moorfields Eye Hospital, developed a system that analyses 3D OCT (optical coherence tomography) eye scans to provide referral decisions for patients. The performance was on par with world experts with over 20 years experience. Finally, I will focus on the third project, which deals with the segmentation of ambiguous images. This is of particular relevance in medical imaging where ambiguities can often not be resolved from the image context alone. We propose a combination of a U-net with a conditional variational autoencoder that is capable of efficiently producing an unlimited number of plausible segmentation map hypotheses for a given ambiguous image. We show that each hypothesis provides a globally consistent segmentation, and that the probabilities of these hypotheses are well calibrated.
The alert did not successfully save. Please try again later.
Bernardino Romera-Paredes, "The U-net and its impact to medical imaging (Conference Presentation)," Proc. SPIE 10950, Medical Imaging 2019: Computer-Aided Diagnosis, 109501G (14 March 2019); https://doi.org/10.1117/12.2519413