You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
8 March 2019Automatic marker-free target positioning and tracking for image-guided radiotherapy and interventions
Current image-guided prostate radiotherapy often relies on the use of implanted fiducial markers (FMs) or transducers for target localization. Fiducial or transducer insertion requires an invasive procedure that adds cost and risks for bleeding, infection and discomfort to some patients. We are developing a novel markerless prostate localization strategy using a pre-trained deep learning model to interpret routine projection kV X-ray images without the need for daily cone-beam computed tomography (CBCT). A deep learning model was first trained by using several thousand annotated projection X-ray images. The trained model is capable of identifying the location of the prostate target for a given input X-ray projection image. To assess the accuracy of the approach, three patients with prostate cancer received volumetric modulated arc therapy (VMAT) were retrospectively studied. The results obtained by using the deep learning model and the actual position of the prostate were compared quantitatively. The deviations between the target positions obtained by the deep learning model and the corresponding annotations ranged from 1.66 mm to 2.77 mm for anterior-posterior (AP) direction, and from 1.15 mm to 2.88 mm for lateral direction. Target position provided by deep learning model for the kV images acquired using OBI is found to be consistent that derived from the implanted FMs. This study demonstrates, for the first time, that highly accurate markerless prostate localization based on deep learning is achievable. The strategy provides a clinically valuable solution to daily patient positioning and real-time target tracking for image-guided radiotherapy (IGRT) and interventions.
The alert did not successfully save. Please try again later.
Wei Zhao, Liyue Shen, Yan Wu, Bin Han, Yong Yang, Lei Xing, "Automatic marker-free target positioning and tracking for image-guided radiotherapy and interventions," Proc. SPIE 10951, Medical Imaging 2019: Image-Guided Procedures, Robotic Interventions, and Modeling, 109510B (8 March 2019); https://doi.org/10.1117/12.2512166