You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
8 March 2019Prototype system for interventional dual-energy subtraction angiography
Dual-energy subtraction angiography (DESA) using fast kV switching has received attention for its potential to reduce misregistration artifacts in thoracic and abdominal imaging where patient motion is difficult to control; however, commercial interventional solutions are not currently available. The purpose of this work was to adapt an x-ray angiography system for 2D and 3D DESA. The platform for the dual-energy prototype was a commercially available xray angiography system with a flat panel detector and an 80 kW x-ray tube. Fast kV switching was implemented using custom x-ray tube control software that follows a user-defined switching program during a rotational acquisition. Measurements made with a high temporal resolution kV meter were used to calibrate the relationship between the requested and achieved kV and pulse width. To enable practical 2D and 3D imaging experiments, an automatic exposure control algorithm was developed to estimate patient thickness and select a dual-energy switching technique (kV and ms switching) that delivers a user-specified task CNR at the minimum air kerma to the interventional reference point. An XCAT-based simulation study conducted to evaluate low and high energy image registration for the scenario of 30-60 frame/s pulmonary angiography with respiratory motion found normalized RMSE values ranging from 0.16% to 1.06% in tissue-subtracted DESA images, depending on respiratory phase and frame rate. Initial imaging in a porcine model with a 60 kV, 10 ms, 325 mA / 120 kV, 3.2 ms, 325 mA switching technique demonstrated an ability to form tissuesubtracted images from a single contrast-enhanced acquisition.
The alert did not successfully save. Please try again later.
Michael A. Speidel, Christiane S. Burton, Ethan P. Nikolau, Sebastian Schafer, Paul F. Laeseke, "Prototype system for interventional dual-energy subtraction angiography," Proc. SPIE 10951, Medical Imaging 2019: Image-Guided Procedures, Robotic Interventions, and Modeling, 109511U (8 March 2019); https://doi.org/10.1117/12.2512956