The skin is the largest organ in our body. There is a high prevalence of skin diseases and a scarcity of dermatologists, the experts in diagnosing and managing skin diseases, making CAD (Computer Aided Diagnosis) of skin disease an important field of research. Many patients present with a skin lesion of concern, to determine if it is benign or malignant. Lesion diagnosis is currently performed by dermatologists taking a history and examining the lesion and the entire body surface with the aid of a dermatoscope. Automatic lesion segmentation and evaluation of the symmetry or asymmetry of structures and colors with the help of computers may classify a lesion as likely benign or as likely malignant. We have explored a deep learning program called Deep Extreme Cut (DEXTR) and used the Faster-RCNN-InceptionV2 network to determine extreme points (left-most, right-most, top and bottom pixels). We used the ISIC challenge-2017 images for the training set and received Jaccard index of 82.2% on the ISIC testing set 2017 and 85.8% on the PH2 dataset. The proposed method outperformed the winner algorithm of the competition by 5.7% for the Jaccard index.
|