15 March 2019Automated signal drift and global fluctuation removal from 4D fMRI data based on principal component analysis as a major preprocessing step for fMRI data analysis
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.
Temporal signal drift is one of the significant artifacts in functional Magnetic Resonance Imaging (fMRI) data that is not given as much attention as motion or physiological artifacts. However, signal drift if not accounted for, can introduce spurious correlation between different regions in resting state fMRI data. Hence detection and removal of signal drift is an important preprocessing step in fMRI data analysis. Here we propose an automated data driven approach that makes use of Principal Component Analysis (PCA) to eliminate not only low frequency signal drift but also spontaneous high frequency global signal fluctuations. This approach is also able to identify the most dominant component for each voxel separately. For task fMRI, this can help us identify regions that respond in a time locked manner to the experiment paradigm. Such regions can be thought of as activation regions. The dominant principal components corresponding to such regions can also be used to investigate intra-region Hemodynamic Response (HR) variability within subjects and across subjects.
Harshit S. Parmar,Brian Nutter,Rodney Long,Sameer Antani, andSunanda Mitra
"Automated signal drift and global fluctuation removal from 4D fMRI data based on principal component analysis as a major preprocessing step for fMRI data analysis", Proc. SPIE 10953, Medical Imaging 2019: Biomedical Applications in Molecular, Structural, and Functional Imaging, 109531E (15 March 2019); https://doi.org/10.1117/12.2512968
ACCESS THE FULL ARTICLE
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.
The alert did not successfully save. Please try again later.
Harshit S. Parmar, Brian Nutter, Rodney Long, Sameer Antani, Sunanda Mitra, "Automated signal drift and global fluctuation removal from 4D fMRI data based on principal component analysis as a major preprocessing step for fMRI data analysis," Proc. SPIE 10953, Medical Imaging 2019: Biomedical Applications in Molecular, Structural, and Functional Imaging, 109531E (15 March 2019); https://doi.org/10.1117/12.2512968