You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
13 March 2019A novel design concept to boost the force output of dielectric elastomer membrane actuators
The structure of dielectric elastomer actuators (DEAs) is based on a thin elastomer layer, which is sandwiched in-between compliant electrodes. This capacitor like structure enables to build lightweight and energy efficient actuators with high design flexibility. An applied high voltage leads to a thickness compression and to a simultaneous area expansion of the elastomer, which can be exploited for actuation. Additionally, due to the capacitive nature of DEAs, the application of a DC voltage allows to maintain a position without consuming energy, making such actuators ideal for, e.g., valves. Despite being relatively easy to manufacture and providing large strokes, membrane DEAs suffer from low force outputs (for single layer systems). This paper presents a novel design concept which permits to retune the stroke-force trade-off of DEAs, by allowing to increase force output of the actuator at the expense of a reduced stroke. This is of particular interest for valve applications, which typically need high closing forces and low strokes in the submillimeter regime. The developed system is based on membrane DEAs biased with linear and non-linear springs. Such systems are typically known for high actuation strain and strokes but low force output, even lower in comparison to a single layer membrane DEA only. By means of the novel design concept, the force output of a single layer membrane DEA can be increased by a factor of 3 to 4. The novel actuator concept is initially illustrated, and subsequently validated via a graphical modeling concept on stripin- plane DEAs.
The alert did not successfully save. Please try again later.
S. Hau, P. Linnebach, G. Rizzello, S. Seelecke, "A novel design concept to boost the force output of dielectric elastomer membrane actuators," Proc. SPIE 10966, Electroactive Polymer Actuators and Devices (EAPAD) XXI, 109660N (13 March 2019); https://doi.org/10.1117/12.2514210