You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
22 July 2019Higher order statistics for anomaly detection in hyper spectral imaging
Hyperspectral imaging (HSI) has become increasingly popular for sensing in defense, commercial, and academic research for its ability to acquire vast amounts of information, relatively quickly, at stand-off distances. As such, the need for rapid or near-real time data reduction is becoming more evident especially when immediate knowledge of the area under investigation is required such as in contested areas, the scene of natural disasters, and other similar scenarios. While analysis of the underlying spectral information may provide specific information about materials present, in HSI determining an anomaly can be just as informative in scenarios such as CB detection for avoidance. Therefore, a rapid, real-time HSI anomaly detection algorithm is merited. In this paper, we present work towards an algorithm for near-real time anomaly detection utilizing higher-order statistics and, in particular, implications due to changes in skewness and kurtosis, the 3rd and 4th central moments. We demonstrate using a visible-SWIR hyperspectral line scanner that anomalies (thiodiglycol and acetaminophen) can be detected in data that is updated to simulate real-time analysis. Changing spectral features result in changes in the probability density function, and can be specifically realized with comparisons of higher order statistics (i.e. skewness and kurtosis), thereby reducing a full spectral analysis at each voxel to a comparison of two values at each pixel. This paper explores utilizing this concept as a means for anomaly detection, evaluating different surfaces that an analyte may be present on, and lastly presents work towards automated background updates for anomaly detection on dynamic surfaces.
Eric R. Languirand andDarren K. Emge
"Higher order statistics for anomaly detection in hyper spectral imaging", Proc. SPIE 11010, Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XX, 110100J (22 July 2019); https://doi.org/10.1117/12.2518726
The alert did not successfully save. Please try again later.
Eric R. Languirand, Darren K. Emge, "Higher order statistics for anomaly detection in hyper spectral imaging," Proc. SPIE 11010, Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XX, 110100J (22 July 2019); https://doi.org/10.1117/12.2518726