You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
11 April 2019Narrowing laser linewidth for high-speed optical communication of FSO
In the last decade, coherent narrow linewidth optical system technology has contributed to reaching a new generation called high-speed optical communication. This technology has improved the transmission capacity of long-haul fiber optic transmission systems. State of the art in the market is a bit rate up to 100 Gbps per channel, where in one fiber optic can be traversed by 80 channels or 8 TB per fiber. The main key of the high-speed transmission is narrowing the laser linewidth which will increase the laser coherency. Some techniques have been proposed before such as the use of quantum well structure, distributed feedback braggers and application of external cavity resonators that have been able to narrow semiconductor linewidth lasers. In this paper we make a theoretical analysis to attempt for narrowing the linewidth semiconductor laser with laser current injection control. We intend the application of narrowing linewidth technique for the free-space optical communications in the case of visible light communication where the demand of laser source with narrower linewidth of signal is one of the key to improve the performance. The analysis is performed based on Schawlow-Townes equation. We prove that increasing the current injection twice causes linewidth constriction twice. The analysis and simulations are performed using Optiwave software.
The alert did not successfully save. Please try again later.
Ucuk Darusalam, Fitri Yuli Zulkifli, Purnomo Sidi Priambodo, "Narrowing laser linewidth for high-speed optical communication of FSO," Proc. SPIE 11044, Third International Seminar on Photonics, Optics, and Its Applications (ISPhOA 2018), 110440Q (11 April 2019); https://doi.org/10.1117/12.2503416