You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
30 August 1989Optical Limiting In Media With Absorbing Microparticles
We have characterized the nonlinearities observed in suspensions of carbon black particles in liquids (CBS). We have developed a preliminary explanation of the optical limiting characteristic of the CBS that qualitatively explains the low thresholds, broad-band response and other limiting characteristics. In this model, the microscopic carbon particles are heated by linear absorption to a temperature at which a plasma can be created by the optical field. These microplasmas rapidly expand, thus scattering the incident light and limiting the transmittance. This model is consistent with our observations that nonlinear scattering dominates transmission losses. We find that limiting depends on the input fluence (J/cm2) rather than irradiance (W/cm2). Therefore, limiting works well (i.e., low limiting energy) for long pulses (≥ 10 nsec) but is less effective for short pulses (≈ psec). In addition, the CBS rapidly degrades with repetitive laser firings, thus, flowing or moving the liquid between firings is necessary.
The alert did not successfully save. Please try again later.
Kamjou Mansour, E. W. Van Stryland, M. J. Soileau, "Optical Limiting In Media With Absorbing Microparticles," Proc. SPIE 1105, Materials for Optical Switches, Isolators, and Limiters, (30 August 1989); https://doi.org/10.1117/12.960615