You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
5 September 2019Bound states in the continuum in symmetric and asymmetric photonic crystal slabs
We model a photonic crystal slab as a Fabry-Perot resonator with two propagating Bloch waves in the periodic medium. This provides a semi-analytical recipe for the computation of photonic crystal slab modes' dispersion and quality factors. We apply for the search and study of bound states in the continuum, which exist above the light line, among the leaky modes, but nevertheless are decoupled from the continuum of propagating modes and are confined inside the periodic medium. We identify them as a set of optogeometric parameters for which the quality factor of a given photonic crystal mode goes to infinity. Also, we illustrate a simple example of the vertical symmetry breaking by adding a semi-infinite dielectric substrate, and comment on some other asymmetric configurations.
The alert did not successfully save. Please try again later.
Anton I. Ovcharenko, Cédric Blanchard, Jean-Paul Hugonin, Christophe Sauvan, "Bound states in the continuum in symmetric and asymmetric photonic crystal slabs," Proc. SPIE 11081, Active Photonic Platforms XI, 110812F (5 September 2019); https://doi.org/10.1117/12.2528474