Presentation + Paper
9 September 2019 Conformational stability of DNA in hydrated ionic liquid by synchrotron-based UV resonance raman
Author Affiliations +
Abstract
Although Deoxyribonucleic acid (DNA) is considered substantially stable in aqueous solution, slow hydrolysis can damage its double-helix structure and cause denaturation when it is stored for several months. Therefore, the design of aqueous solvents that are able to stabilize and maintain DNA conformation is a challenging issue. Ionic liquids (ILs) appear as ideal water co-solvents for DNA biotechnology due to their unique properties. We have investigated the thermal stability of DNA in 1-butyl-3-methylimidazolium aqueous solutions by synchrotron-based UV Resonance Raman (UVRR) spectroscopy with the aim to clarify the role played by concentration of IL in stabilizing the DNA natural conformation. The synchrotron-based UV source for UVRR measurements allows us to enhance specific vibrational signals associated to nitrogenous bases of DNA, through an appropriate tuning of the excitation wavelength. Such approach permits to probe the rearrangements in the local environment around specific nucleotides as a function of thermal conditions.
Conference Presentation
© (2019) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
C. Bottari, I. Mancini, A. Mele, A. Gessini, C. Masciovecchio, and B. Rossi "Conformational stability of DNA in hydrated ionic liquid by synchrotron-based UV resonance raman", Proc. SPIE 11086, UV and Higher Energy Photonics: From Materials to Applications 2019, 110860Q (9 September 2019); https://doi.org/10.1117/12.2529077
Lens.org Logo
CITATIONS
Cited by 1 scholarly publication.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Raman spectroscopy

Ultraviolet radiation

Liquids

Molecular interactions

Molecules

Raman scattering

Absorbance

Back to Top