You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
The Rockets for Extended-source X-ray Spectroscopy (tREXS) are a series of sub-orbital rocket payloads that will aim to make large field-of-view spectroscopic observations of diffuse soft X-ray astrophysical objects. The tREXS payloads will passively focus X-rays onto a co-aligned array of reflection gratings, dispersing the incident X-rays onto a focal plane camera. The large focal plane requires the detector to cover a large area (100s of mm), have good quantum efficiency across the soft X-ray energy range (300 eV to 1000 eV), and survive the high-stress environment of a sub-orbital rocket launch. This paper will look at the options that were considered for this focal plane detector including Micro-Channel Plates, Charge-Coupled Devices, and CMOS detectors; including the use of commercially available camera solutions from companies such as Andor. The final choice for the focal plane camera will then be discussed in detail including the ultimate decisions behind the choice, system level integration into the payload design, and the requirements on the readout electronics, telemetry interface, and power.
The alert did not successfully save. Please try again later.
James H. Tutt, Drew M. Miles, Randall M. McEntaffer, Tyler Anderson, Matthew Weiss, Bridget C. O'Meara, "The focal plane camera for tREXS," Proc. SPIE 11118, UV, X-Ray, and Gamma-Ray Space Instrumentation for Astronomy XXI, 111180C (9 September 2019); https://doi.org/10.1117/12.2529555