You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
9 September 2019Evolutionary optimization algorithms for nonimaging optical design
Evolutionary optimization algorithms have been recently introduced as nonimaging optics design techniques. Unlike optimization of imaging systems, non sequential ray tracing simulations and complex non centred systems design must be considered, adding complexity to the problem. The Merit Function (MF) is a key element in the automatic optimization algorithm, nevertheless the selection of each objective's weight, {wi}, inside merit function needs a previous trial and error process for each optimization. The problem then is to determine appropriate weights value for each objective. In this paper we propose a new Dynamic Merit Function, DMF, with variable weight factors {wi(n)}. The proposed algorithm, automatically adapts weight factors, during the evolution of the optimization process. This dynamic merit function avoids the previous trial and error procedure selecting the right merit function and provides better results than conventional merit functions (CMF). Also we analyse the Multistart optimization algorithm applied in the flowline nonimaging design technique.
The alert did not successfully save. Please try again later.
Ángel García-Botella, Daniel Vázquez-Moliní, Berta Garcia-Fernandez, Antonio Álvarez Fernandez-Balbuena, "Evolutionary optimization algorithms for nonimaging optical design," Proc. SPIE 11120, Nonimaging Optics: Efficient Design for Illumination and Solar Concentration XVI, 111200M (9 September 2019); https://doi.org/10.1117/12.2529180