You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
2 October 2019Machine learning methods and classification of vegetation in Brest, France
Urban green land plays a special significant role in our life. Many previous studies have already proven the feasibility of satellite imagery processing for urban green land detection, and many classification techniques were tested for this purpose. In this paper, two methods of Machine learning, such as Artificial Neural Networks (ANN) and Random Forest (RF) were tested on a series of very high spatial resolution satellite imagery to classify, highlight urban green lands and eventually study their change in three years. Firstly, we present Multilayer Perceptron (MLP), a simple feed-forward neural network which consists of two steps, SLIC superpixel segmentation and image classification through MLP trained model. Secondly, RF technique was applied and compared to the previous classification. Then the classification results were interpreted at the final stage. These methods are performed on satellite images Pléiades of the city of Brest (3 images acquired in 2016, 2017 and 2018), these multispectral images are already preprocessed and all pan-sharpened to 50 cm spatial resolution.
The alert did not successfully save. Please try again later.
Guanyao Xie, Simona Niculescu, Chinguyen Lam, Elise Seveno, "Machine learning methods and classification of vegetation in Brest, France," Proc. SPIE 11157, Remote Sensing Technologies and Applications in Urban Environments IV, 111570J (2 October 2019); https://doi.org/10.1117/12.2533436