Translator Disclaimer
19 November 2019 Possibility of vergence disagreement reducing on the base of approximate restoration of the depth map
Author Affiliations +
The article describes the approach that allows to reconstruct the image formed by the video see-through mixed reality system corresponding to the convergence of the device user eyes. Convergence is defined by the user eye pupils position acquired from the mixed reality device eye tracking system. The image reconstruction method is based on the use of an extended (2.5-dimensional) representation of the image obtained, for example, using a 3D scanner that builds a depth map of the scene. In the proposed solution, lens optical systems that form images of the real world on LCD screens and eyepieces that project these images into the user eyes do not change their characteristics and position. The image is reconstructed by projecting the points of the original image to the image points corresponding to the required convergence by the method of "refocusing" at a distance for each point. The advantages and disadvantages of this method are shown. An approach is proposed that reduces visual perception discomfort caused by an ambiguous distance to the image point, for example, in the case of mirror or transparent objects. Virtual prototyping of the mixed reality system showed the benefits of the proposed approach to reduce the visual perception discomfort caused by the mismatch between the convergence of human eyes and the images formed by the lenses of the mixed reality system.
© (2019) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Andrey Zhdanov, Dmitry Zhdanov, Igor Potemin, Nikolay Bogdanov, and Sergei Bykovskii "Possibility of vergence disagreement reducing on the base of approximate restoration of the depth map", Proc. SPIE 11185, Optical Design and Testing IX, 1118517 (19 November 2019);

Back to Top