You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
17 February 2020Photoacoustic computed tomography guided microrobots for targeted navigation in intestines in vivo
Tremendous progress in synthetic micro/nanomotors has been made for potential biomedical applications. However, existing micro/nanomotor platforms are inefficient for deep tissue imaging and motion control in vivo. Here, we present a photoacoustic computed tomography (PACT) guided investigation of micromotors in intestines in vivo. The micromotors enveloped in microcapsules exhibit efficient propulsion in various biofluids once released. PACT has visualized the migration of micromotor capsules toward the targeted regions in real time in vivo. The integration of the developed microrobotic system and PACT enables deep imaging and precise control of the micromotors in vivo.
The alert did not successfully save. Please try again later.
Lei Li, Zhiguang Wu, Yiran Yang, Peng Hu, Wei Gao, Lihong V. Wang, "Photoacoustic computed tomography guided microrobots for targeted navigation in intestines in vivo," Proc. SPIE 11240, Photons Plus Ultrasound: Imaging and Sensing 2020, 112402R (17 February 2020); https://doi.org/10.1117/12.2547559