You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
22 December 1989Development Of Materials For Nonlinear Optical Information Processing Devices
Research directed at two-dimensional optical information processing requires large arrays of binary logic elements with moderate power demand. To minimise power consumption intermediate switch times of ≤ 1 μs would appear to be optimum. A short-term target is to develop a 104 element array of such switches with ≤ 1 watt power consumption. This puts specific demands on the nonlinear materials being exploited. For example, those devices based on optoelectronic nonlinearities need high quality material with long carrier lifetimes. A novel time-resolved photoluminescence microscope spectrometer has been developed for measuring such lifetimes. The alternative nonlinear interference filter (NLIF) devices, based on optothermal nonlinearities, also look promising in this context. Because of the need for high quality structurally stable thin-film material, a new UHV molecular beam deposition (MBD) facility has been set up to permit production of low damage threshold, stable dielectric layers. Good thickness uniformity has been demonstrated over large, 100 mm diameter, substrates.
The alert did not successfully save. Please try again later.
Andrew C. Walker, Brian S. Wherrett, S. Desmond Smith, "Development Of Materials For Nonlinear Optical Information Processing Devices," Proc. SPIE 1127, Nonlinear Optical Materials II, (22 December 1989); https://doi.org/10.1117/12.961392