Translator Disclaimer
Presentation + Paper
18 February 2020 BiOBr nanoflakes with strong Kerr nonlinearity towards hybrid integrated photonic devices
Author Affiliations +
Proceedings Volume 11282, 2D Photonic Materials and Devices III; 112820Q (2020)
Event: SPIE OPTO, 2020, San Francisco, California, United States
As a new group of advanced 2D layered materials, bismuth oxyhalides, i.e., BiOX (X = Cl, Br, I), have recently become of great interest. In this work, we characterize the third-order optical nonlinearities of BiOBr, an important member of the BiOX family. The nonlinear absorption and Kerr nonlinearity of BiOBr nanoflakes at both 800 nm and 1550 nm are characterized via the Z-Scan technique. Experimental results show that BiOBr nanoflakes exhibit a large nonlinear absorption coefficient β ~ 10-7 m/W as well as a large Kerr coefficient n2 ~ 10-14 m2/W. We also note that the n2 of BiOBr reverses sign from negative to positive as the wavelength is changed from 800 nm to 1550 nm. We further characterize the thickness-dependent nonlinear optical properties of BiOBr nanoflakes, finding that the magnitudes of β and n2 increase with decreasing thickness of the BiOBr nanoflakes. Finally, we integrate BiOBr nanoflakes into silicon integrated waveguides and measure their insertion loss, with the extracted waveguide propagation loss showing good agreement with mode simulations based on ellipsometry measurements. These results confirm the strong potential of BiOBr as a promising nonlinear optical material for high-performance hybrid integrated photonic devices.
Conference Presentation
© (2020) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Linnan Jia, Dandan Cui, Jiayang Wu, Haifeng Feng, Yunyi Yang, Tieshan Yang, Yang Qu, Yi Du, Weichang Hao, Baohua Jia, and David J. Moss "BiOBr nanoflakes with strong Kerr nonlinearity towards hybrid integrated photonic devices", Proc. SPIE 11282, 2D Photonic Materials and Devices III, 112820Q (18 February 2020);

Back to Top