You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
28 February 2020Ring-assisted Mach-Zehnder interferometer switch with multiple rings per switch element
Wavelength-selective switches have been proposed for datacenter use to enhance their scalability and to help in meeting ever-increasing traffic demands. We have previously demonstrated a 4 × 4 ring-based crossbar silicon photonic switch in which each cross-point contained three ring pairs to partition the free spectral range (FSR) into three equal regions to reduce wavelength tuning range per ring pair— thereby reducing both the tuning power consumption and stress on the rings—while maintaining full routing flexibility. However, the question of scalability remains for the crossbar switch in which 96 signal pads—routed to each ring—are required to fully control it. The pad count scales by 2𝑀𝑁2 for an 𝑁 × 𝑁 switch with 𝑀 ring pairs. In this paper we present a 4-port silicon photonic ring-assisted Mach-Zehnder interferometer (RAMZI) switch, fabricated in the AIM Photonics process, with multiple-sized rings per switching elements in a Beneš network configuration to reduce the number of electrical pads required to 36 signal pads. The switch is 500μm 3mm in size and is packaged on a custom PCB. In such a switch, the pad count scales by 2𝑀(𝑁 log2 𝑁 − 𝑁). Another advantage the RAMZI switch has over the crossbar switch is that the loss through the switch is not path-dependent due to its balanced path configuration. In the crossbar switch, the difference between the shortest and longest paths is 2(𝑁 − 1) switching elements.
The alert did not successfully save. Please try again later.
Takako Hirokawa, Mitra Saeidi, Luke Theogarajan, Adel A. M. Saleh, Clint L. Schow, "Ring-assisted Mach-Zehnder interferometer switch with multiple rings per switch element," Proc. SPIE 11286, Optical Interconnects XX, 1128612 (28 February 2020); https://doi.org/10.1117/12.2546865