You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
9 March 2020Propagation dynamics of ballistic light carrying orbital angular momentum (Conference Presentation)
Structured light can enhance the functionality of optical communication and sensing systems. Dense scattering environments such as those experienced in coastal water or foggy conditions result in degradation of structured optical fields. We present findings that indicate the preservation of phase structure of beams for Ballistic Light carrying Orbital Angular Momentum (OAM) propagated through a dense scattering over short (<3m) distance with attention of up to 20dB. We present a numerical channel modelling approach that can predict the scattering behaviour at extended distances, which indicate that there is a strong mode dependant variance in crosstalk from the interaction of beams that carry OAM with randomly displaced scattering particles. These result present an exciting possibility to use OAM modes as a long distance particulate sensor and could potentially lead to the development of novel tools for monitoring the particles in the environment.
The alert did not successfully save. Please try again later.
Shaun Viola, Alison Yao, David McKee, Martin P. J. Lavery, "Propagation dynamics of ballistic light carrying orbital angular momentum (Conference Presentation)," Proc. SPIE 11297, Complex Light and Optical Forces XIV, 112970U (9 March 2020); https://doi.org/10.1117/12.2546840