You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
16 March 2020Spectral CT metal artifact reduction using weighted masking and a one step direct inversion reconstruction algorithm
This work investigates a metal artifact reduction technique that combines weighted masking of projection data corrupted by metal, improved photon-counting detector modeling, and the constrained ‘one-step’ spectral CT image reconstruction (cOSSCIR) algorithm. The cOSSCIR algorithm directly estimates the basis material maps from the photon counts data using an optimization algorithm that places constraints on the basis maps. The improved photon-counting detector spectral modeling improves the accuracy of the polyenergetic forward model, which is expected to reduce beam hardening artifacts due to metal. This study also explores weighting schemes to reduce the contribution of counts measurements corrupted by metal during reconstruction, including selective masking across energy window. Unlike two-step decomposition approaches, cOSSCIR does not require energy windows to be registered, thus enabling energy-selective masking of data corrupted by metal. Preliminary feasibility of the proposed methods was investigated through experimental photon-counting CT acquisition of a tissue specimen with metal inserts. The cOSSCIR algorithm estimated acrylic and aluminum basis maps which were combined to form a 50 keV effective monoenergetic image. The effective monoenergetic image reconstructed by cOSSCIR from all counts data demonstrated reduced streak and view aliasing artifacts compared to the reference filtered backprojection image. Weighting of the data corrupted by metal further reduced the remaining beam hardening artifacts, with weighted masking further reducing the streak artifacts.
The alert did not successfully save. Please try again later.
Taly Gilat Schmidt, Rina Foygel Barber, Emil Y. Sidky, "Spectral CT metal artifact reduction using weighted masking and a one step direct inversion reconstruction algorithm," Proc. SPIE 11312, Medical Imaging 2020: Physics of Medical Imaging, 113121F (16 March 2020); https://doi.org/10.1117/12.2550337