You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
16 March 2020Automated eye disease classification method from anterior eye image using anatomical structure focused image classification technique
Masahiro Oda,1 Takefumi Yamaguchi,2 Hideki Fukuoka,3 Yuta Ueno,4 Kensaku Mori1,5
1Nagoya Univ. (Japan) 2Ichikawa General Hospital (Japan) 3Kyoto Prefectural Univ. of Medicine (Japan) 4Univ. of Tsukuba (Japan) 5National Institute of Informatics (Japan)
This paper presents an automated classification method of infective and non-infective diseases from anterior eye images. Treatments for cases of infective and non-infective diseases are different. Distinguishing them from anterior eye images is important to decide a treatment plan. Ophthalmologists distinguish them empirically. Quantitative classification of them based on computer assistance is necessary. We propose an automated classification method of anterior eye images into cases of infective or non-infective disease. Anterior eye images have large variations of the eye position and brightness of illumination. This makes the classification difficult. If we focus on the cornea, positions of opacified areas in the corneas are different between cases of the infective and non-infective diseases. Therefore, we solve the anterior eye image classification task by using an object detection approach targeting the cornea. This approach can be said as “anatomical structure focused image classification”. We use the YOLOv3 object detection method to detect corneas of infective disease and corneas of non-infective disease. The detection result is used to define a classification result of an image. In our experiments using anterior eye images, 88.3% of images were correctly classified by the proposed method.