We present a refraction-corrected sound speed reconstruction technique for layered media based on the angular coherence of plane waves. Previous work has successfully shown that sound speed estimation and refraction- corrected image reconstruction can be achieved using the coherence of full-synthetic aperture channel data. However, methods for acquiring the full-synthetic aperture dataset require a large number of transmissions, which can confound sound speed estimation due to the scatterer motion between transmit events, especially for in-vivo application. Furthermore, sound speed estimation requires producing full-synthetic aperture coherence images for each trial sound speed, which can make the overall computational cost quite burdensome. The angular coherence beamformer, initially devised as a quicker alternative to the more conventional spatial coherence beamformer, measures coherence between fully-beamformed I/Q channel data for each plane wave as opposed to the receive channel data prior to receive beamforming. As a result, angular coherence beamforming can significantly reduce the computation time needed to reconstruct a coherence image by taking advantage of receive beamforming. Previous work has used the coherence maximization of full-synthetic aperture channel data to perform sound speed estimation. By replacing spatial coherence with angular coherence, we apply a similar methodology to channel data from plane-waves to significantly reduce the computational cost of sound speed estimation. This methodology has been confirmed by both simulated and experimental channel data from plane waves.
|