You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
18 December 2019Traveling wave electrode design for a LiNbO3 integrated optical switch
Integrated array optical switch puts forward higher requirements for switch time and switch voltage. In order to achieve lower switch voltage and shorter switch time, the theoretical model of coplanar waveguides (CPW) electrode is established for Lithium niobate (LiNbO3) optical switch, and a novel structure with thickening buffer layer between electrodes is proposed in this paper. Then the modulation bandwidth and electro-optic overlap integral are qualitatively analyzed and optimized by finite element method (FEM). The simulation results show that the electro-optic overlap integral increases gradually with the raising of buffer layer thickness between electrodes. The switch voltage of the optical switch is about 5.7V, which is lower than the traditional electrode structure. The switch time is about 0.48ns. This new structure contributes to reducing the half-wave voltage of the modulator and can be potentially used in the field of electro-optic modulation.