You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
30 March 2020Proximity effect in parallelized microfabrication using two-photon polymerization
Two-photon polymerization is a photochemical process usually initiated by tightly focusing an ultrafast laser pulse into a volume of photosensitive photoresists with a high-numerical-aperture objective. Scanning a write voxel" in 3D enables near free-form fabrication, but at a limited speed which is a critical factor for industrial purposes, because generally only a single writing-beam is used. Several strategies have been implemented to improve the fabrication speed, one such strategy is massive parallelization which is the approach used in our PHENOmenon H2020 European project. Massive parallelization can be realized by beam splitting diffractive optical elements which allow simultaneous fabrication with thousands of beams, decreasing the overall fabrication time. A major unexpected obstacle is encountered in massively parallelized fabrication: using several spots simultaneously to polymerize, local changes in the 2PP threshold have been observed. We linked this to the proximity effect. The aim of this study is to understand the proximity effect in parallel microfabrication using simulation to predict its behaviour and different systematic experiments to reduce the proximity effect such as changing photoresist, using thinner photoresist layers to increase oxygen penetration or using higher Numerical Aperture Objectives.
The alert did not successfully save. Please try again later.
L. Pérez Covarrubias, C. Arnoux, Q. Carlier, A. Khaldi, P. Baldeck, K. Heggarty, "Proximity effect in parallelized microfabrication using two-photon polymerization," Proc. SPIE 11349, 3D Printed Optics and Additive Photonic Manufacturing II, 113490O (30 March 2020); https://doi.org/10.1117/12.2555377