You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
5 May 2020Statistical analysis of SAR signature domains
In support of airborne radar detection missions that rely on Synthetic Aperture Radar (SAR) imagery, there is a need for extensive sets of training data. Due to a paucity of measured data from some targets of interest, there is sometimes a need to train on only simulated SAR data, and yet detect live targets with high confidence during testing. In support of this mission, many researchers have applied a variety of mathematical techniques to simulate data sets. These techniques range from template matching and simpler statistical methods to deep neural networks (DDNs). They demonstrate that with proper pre-processing, some of these methods can achieve target detection with apparently high confidence. However, for all these papers there is no exact measurement of the differences or similarities in the simulated and measured data that would provide a good predictor of the margins between decision boundaries. Thus, this paper has developed a combination of pre-processing methods and standard metrics that enable the assessment of simulated data quality independent of which target recognition algorithm will be utilized. The results show that for some pre-processing methods the differences in simulated data and measured data do not always lend themselves to the desired ability to train on simulated SAR imagery and test on measured SAR imagery.
The alert did not successfully save. Please try again later.
Jamie Godwin, Michael Moore, Donald Waagen, Donald Hulsey, Railey Conner, "Statistical analysis of SAR signature domains," Proc. SPIE 11393, Algorithms for Synthetic Aperture Radar Imagery XXVII, 113930P (5 May 2020); https://doi.org/10.1117/12.2558564