You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
22 April 2020Towards simulating multipath interference at detectors: a tool for validating location fingerprinting methods
Signal attributes such as angle of arrival (AoA), time of arrival (ToA), signal amplitude, and phase can be used by a set of receivers (detectors) to perform location fingerprinting (LF), whereby the location of a wireless source is determined. In validating new approaches for location fingerprinting, it is useful to simulate these attributes for the subset of signals that intersect detectors. However, given indoor settings with a complex architecture, it is computationally expensive to simulate multipath propagation while preserving detailed signal information. Moreover, this cost can be unnecessary since determining whether an LF approach is promising may not require tracing all rays that impact the detector. Here, we report on our preliminary efforts to design and test a MATLAB-based simulation tool for wireless propagation that addresses this issue. Our approach builds upon well-known ray-tracing techniques, but innovates via an algorithm designed to obtain a sizable subset of rays that intersect a detector, along with the AoA, ToA, signal amplitude, and phase for each such ray. Finally, we employ our tool in conjunction with a neural network-based method for location fingerprinting, demonstrating the intended use case for our simulation tool.
The alert did not successfully save. Please try again later.
Daniel Rayborn, Logan Smith, Surya Kodipaka, Nicholas Smith, Bo Tang, John E. Ball, Maxwell Young, "Towards simulating multipath interference at detectors: a tool for validating location fingerprinting methods," Proc. SPIE 11423, Signal Processing, Sensor/Information Fusion, and Target Recognition XXIX, 114230W (22 April 2020); https://doi.org/10.1117/12.2558793