You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
9 September 2020Infrared absorption near the bandgap in the InAs/InAsSb superlattice
We have studied infrared absorption near the bandgap energy in mid-wavelength (MWIR) III-V photon detectors built in the nBn configuration. The absorbing material is the InAs/InAsSb superlattice. We show that in a practical device near the infrared (IR) cutoff, the spectral response curve as a function of photon energy is proportional to the absorption coefficient, to a good approximation. Thus, in the near-gap range, the energy dependence of the device spectral response is a reliable proxy for the energy dependence of the absorption coefficient. We demonstrate this by means of an expansion of the Hovel equations in powers of the product of the absorption coefficient and hole diffusion length. One application of this result is that the point of maximum slope of the spectral response curve can be used to locate the true bandgap energy. This result also facilitates a study of absorption in the Urbach tail, which occurs at sub-gap energies. The temperature dependence of the Urbach steepness parameter was found to be consistent with the dominant phonon energy of InAs.
The alert did not successfully save. Please try again later.
David R. Rhiger, Edward P. Smith, "Infrared absorption near the bandgap in the InAs/InAsSb superlattice," Proc. SPIE 11503, Infrared Sensors, Devices, and Applications X, 1150305 (9 September 2020); https://doi.org/10.1117/12.2569820