You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
20 September 2020Investigation of optical turbulence over an urban area: comparison between experimental results and simulation
Our aim is to characterize the optical turbulence over the urban areas. Since it is difficult to measure 𝐶2/𝑛 (see PDF) continuously over an urban area, we explore the possibility of using a mesoscale weather prediction model to predict 𝐶2/𝑛 (see PDF) over the urban area. To this end, the output of the Weather Research and Forecast model (WRF) was coupled with a micrometeorological parametrization, which allowed calculation of 𝐶2/𝑛 (see PDF) at each numerical grid point in the surface layer. Numerical results are compared to data of path-averaged measurements of optical turbulence performed with a large aperture scintillometer (BLS900) over the city of Ettlingen (southwestern Germany) during two time periods in Spring and Summer 2013. Effects of the heat island effect are revealed by high turbulence values, observed at night-time.
The alert did not successfully save. Please try again later.
Detlev Sprung, Carmen Ullwer, Erik Sucher, Thomas Kociok, Alexander M. J. van Eijk, Karin Stein, "Investigation of optical turbulence over an urban area: comparison between experimental results and simulation," Proc. SPIE 11532, Environmental Effects on Light Propagation and Adaptive Systems III, 1153205 (20 September 2020); https://doi.org/10.1117/12.2572997