You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
10 October 2020Infrared photodetection based on hot electrons in plasmonic nanostructures
The utilization of surface plasmons (SPs) in the form of hot electrons has a great potential for applications in photodetection. Unfortunately, the metallic nanostructures usually support only narrowband plasmon resonances and the hot-electron thermalization loss results in an inefficient internal quantum process. Here, we demonstrate a broadband super absorber based on the metallic nanorod arrays (NRs). The average absorption across the entire visible band is up to 0.8 and the conversion efficiency is over 30-fold enhanced relative to the reference. Furthermore, considering the metallic nanostructures are usually complex with a high fabrication challenge, we present a purely planar hot-electron photodetector based on Tamm plasmons (TPs). More than 87% of the light incidence can be absorbed by the top metal layer. This enables a strong and unidirectional photocurrent and a photoresponsivity that can even be higher than that of the conventional nanostructured system.
The alert did not successfully save. Please try again later.
Cheng Zhang, Xiaofeng Li, "Infrared photodetection based on hot electrons in plasmonic nanostructures," Proc. SPIE 11557, Plasmonics V, 115570S (10 October 2020); https://doi.org/10.1117/12.2575326