PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.
Accurate and objective image quality assessment is essential for the task of radiation dose optimization in clinical CT. Standard method relies on multi-reader multi-case (MRMC) studies in which radiologists are tasked to interpret diagnostic image quality of many carefully-collected positive and negative cases. The efficiency of such MRMC studies is frequently challenged by the lengthy and expensive procedure of case collection and the establishment of clinical reference standard. To address this challenge, multiple methods of virtual clinical trial to synthesize patient cases at different conditions have been proposed. Projection-domain lesion- / noise-insertion methods require the access to patient raw data and vendor-specific proprietary tools which are frequently not accessible to most users. The conventional image-domain noise-insertion methods are often challenged by the over-simplified lesion models and CT system models which may not represent conditions in real scans. In this work, we developed deep-learning lesion and noise insertion techniques that can synthesize chest CT images at different dose levels with and without lung nodules using existing patient cases. The proposed method involved a nodule-insertion convolutional neural network (CNN) and a noise-insertion CNN. Both CNNs demonstrated comparable quality to our previously-validated projection domain lesion- / noise-insertion techniques: mean structural similarity index (SSIM) of inserted nodules 0.94 (routine dose), and mean percent noise difference ~5% (50% of routine dose). The proposed deep-learning techniques for chest CT virtual clinical trial operate directly on image domain, which is more widely applicable than projection-domain techniques.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.
The alert did not successfully save. Please try again later.
Hao Gong, Jeffrey F. Marsh, Jamison Thorne, Shuai Leng, Cynthia H. McCollough, Joel G. Fletcher, Lifeng Yu, "Deep-learning lesion and noise insertion for virtual clinical trial in chest CT," Proc. SPIE 11595, Medical Imaging 2021: Physics of Medical Imaging, 115950S (15 February 2021); https://doi.org/10.1117/12.2582106