You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
23 January 1990Techniques For Characterization Of High-Loss Optical Fibers
Optical fibers developed for sensor applications often exhibit high optical losses. While these losses may be entirely acceptable for the design application, efforts to improve fiber performance still require loss quantification and the identification of optical loss mechanisms. Existing fiber loss characterization techniques (e.g., optical time domain reflectometry) are generally only appropriate for low loss (communication grade) fibers and may give little or no information on loss mechanisms. At the Pacific Northwest Laboratory, techniques have been developed for the characterization of high-loss (tens of dB per meter) optical fibers which allow discrimination between scattering and absorptive losses. Two techniques are presented. In the "differential scattering" method, differential fiber scattering losses are acquired over the length of the fiber to obtain a scattering loss coefficient. This information combined with a conventional total fiber loss measurement (e.g., using the "cut-back" method) allows inference of the absorptive part of the fiber loss. In the second method, "scanning aperture" characteriza-tion, the fiber is scanned by a moving aperture to yield curves of differential and integral scatter intensity versus length. This curve not only provides corroboration of the previously acquired differential scattering data, but also points out high-loss regions in the optical fiber. Both methods will be fully described. Experimental data on representative fibers will be presented.
The alert did not successfully save. Please try again later.
Jeffrey W. Griffin, Richard A. Craig, Kurt A. Stahl, "Techniques For Characterization Of High-Loss Optical Fibers," Proc. SPIE 1180, Tests, Measurements, and Characterization of Electro-Optic Devices and Systems, (23 January 1990); https://doi.org/10.1117/12.963456