We present progress toward measuring nanometer-scale vibrations via a frequency-entangled two-photon interferometer. Unlike classical interference, two-photon – or Hong-Ou-Mandel – interference allows for optical metrology with resilience against imbalanced loss, dispersion, and optical background. However, the resolution of traditional degenerate frequency two-photon interference is limited by the photons’ bandwidths, requiring large bandwidths or long integration times to achieve nanometer-scale resolution. We have implemented a twophoton interferometer utilizing highly non-degenerate frequency-entangled photon pairs at 810 nm and 1550 nm, drastically increasing measurement sensitivity while retaining the advantages of two-photon interference. This enhancement comes via a beat note with frequency proportional to the photon detuning of 177 THz. The resulting measurement saturates the quantum Cram´er-Rao bound, maximizing the information extracted per photon. We have demonstrated a measurement resolution of 2.3 nm with fewer than 18,000 detected photon pairs, orders of magnitude better than previous results. By reflecting one photon from the pair off a target surface, we may use our system to study small-scale vibrations.
|