Percutaneous ablation procedures have been increasingly utilized to non-invasively treat tumors, such as hepatocellular carcinoma, by heating tumor cells beyond the lethal threshold. Intraprocedural temperature monitoring via spectral CT thermometry with a sensitivity less than 3 °C can reduce local recurrence rates by ensuring the tumor and its surrounding safety margin reach lethal temperatures. Because temperature sensitivity is reliant on noise, the effect of additional denoising, radiation dose, slice thickness, and iterative reconstruction levels on temperature sensitivity was evaluated on physical density slices utilized to generate temperature maps. Three different denoising algorithms (total variation, bilateral filtering, and non-local means) were applied to input images prior to generating physical density maps. Differences in noise in physical density and temperature sensitivity were calculated for each combination of parameters. All three denoising algorithms did not significantly affect quantification with an average difference of 1 x 10-4 g/mL from standard reconstructions, while generally non-local means denoising performed best with noise decreasing to 2 x 10-4 g/mL. The reduction in noise corresponded to temperature sensitivity decreasing from 15 ± 4 °C with standard reconstructions to 3 ± 2 °C with non-local means denoising at 2 mGy with 2 mm slices. Overall, temperature sensitivity at low radiation doses improved to clinically satisfactory levels with additional denoising. These accurate temperature maps from spectral CT thermometry will enable real-time, non-invasive temperature monitoring to ensure critical structures are not thermally damaged and the entire tumor and safety margin reach the lethal threshold, reducing local recurrences.
|