Electron paramagnetic resonance imaging (EPRI) is a rising technique for preclinical imaging of small animals. The technique uses paramagnetic spin contrast materials to determine the spectral-spatial (SS) distribution of materials within the subject. A widely used EPRI modality employs continuous wave (CW) scanning scheme with Zeeman modulation (ZM). The imaging model in this technique can be related to the Radon transform (RT) of the SS image, and image reconstruction is equivalent to reconstruction from RT data. However, data collection is limited by the finite strength of the magnetic field gradient applied to the subject, and there is a desire to speed up scanning by collecting data only over a limited-angular range (LAR). In this study, we tailor a recently developed DTV algorithm in CT to investigate accurate image reconstruction from RT over LARs in EPRI. The results show that the DTV algorithm can be adapted for image reconstruction of quality comparable to that of images reconstructed from full-angular range (FAR) data, suggesting that algorithms can be developed to enable LAR scanning in CW-ZM EPRI with reduced imaging time.
|