Normal Pressure Hydrocephalus (NPH) is a brain disorder associated with ventriculomegaly. Accurate segmentation of the ventricle system into its sub-compartments from magnetic resonance images (MRIs) could help evaluate NPH patients for surgical intervention. In this paper, we modify a 3D U-net utilizing probability maps to perform accurate ventricle parcellation, even with grossly enlarged ventricles and post-surgery shunt artifacts, from MRIs. Our method achieves a mean dice similarity coefficient (DSC) on whole ventricles for healthy controls of 0.864 ± 0.047 and 0.961 ± 0.024 for NPH patients. Furthermore, with the benefit of probability maps, the proposed method provides superior performance on MRI with grossly enlarged ventricles (mean DSC value of 0.965 ± 0.027) or post-surgery shunt artifacts (mean DSC value of 0.964 ± 0.031). Results indicate that our method provides a high robust parcellation tool on the ventricular systems which is comparable to other state-of-the-art methods.
|