Ground-based exoplanet science relies on the correction of aberrations induced by both atmosphere and instrument. However, current pupil-plane adaptive optics faces two major challenges: non-common-path aberrations and petaling modes. One solution is to add a wavefront sensor which operates in the focal plane, such as a photonic lantern (PL), a waveguide that efficiently couples aberrated light into single-mode fibers. We present a first experimental verification of real-time closed-loop control with the photonic lantern wavefront sensor (PLWFS), using a linear phase-retrieval algorithm, and on-sky demonstrations. We also discuss non-linear reconstruction using a neural network, and consider potentials for spectrally dispersed sensing.
|