In the study, we first introduce a novel AI-based system (MOM-ClaSeg) for multiple abnormality/disease detection and diagnostic report generation on PA/AP CXR images, which was recently developed by applying augmented Mask RCNN deep learning and Decision Fusion Networks. We then evaluate performance of MOM-ClaSeg system in assisting radiologists in image interpretation and diagnostic report generation through a multi-reader-multi-case (MRMC) study. A total of 33,439 PA/AP CXR images were retrospectively collected from 15 hospitals, which were divided into an experimental group of 25,840 images and a control group of 7,599 images with and without processed by MOM-ClaSeg system, respectively. In this MRMC study, 6 junior radiologists (5~10yr experience) first read these images and generated initial diagnostic reports with/without viewing MOM-ClaSeg-generated results. Next, the initial reports were reviewed by 2 senior radiologists (>15yr experience) to generate final reports. Additionally, 3 consensus expert radiologists (>25yr experience) reconciled the potential difference between initial and final reports. Comparison results showed that usingMOM-ClaSeg, diagnostic sensitivity of junior radiologists increased significantly by 18.67% (from 70.76% to 89.43%, P<0.001), while specificity decreased by 3.36% (from 99.49% to 96.13%, P<0.001). Average reading/diagnostic time in experimental group with MOM-ClaSeg reduced by 27.07% (P<0.001), with a particularly significant reduction of 66.48% (P<0.001) on abnormal images, indicating that MOM-ClaSeg system has potential for fast lung abnormality/disease triaging. This study demonstrates feasibility of applying the first AI-based system to assist radiologists in image interpretation and diagnostic report generation, which is a promising step toward improved diagnostic performance and productivity in future clinical practice.
|