It is important to understand the dynamic thoracoabdominal architecture and its change after surgery since thoracic insufficiency syndrome (TIS) patients often suffer from spinal deformation, leading to alterations in regional respiratory structure and function. Free-breathing based quantitative dynamic MRI (QdMRI) provides a practical solution to evaluate the regional dynamics of the thorax quantitatively for TIS patients. Our current aim is to investigate if QdMRI can also be utilized to measure architecture for TIS patients before and after surgery. 49 paired TIS patients (before and after surgery, with 98 dynamic MRI), and another 150 healthy children comprise our study cohort. 248 dynamic MRI images were first acquired and then 248 4D images were constructed. 3D volume images at end expiration (EE) and end inspiration (EI) were used in the analysis, leading to a total of 496 3D volume images in this study. Left and right lungs, left and right hemi-diaphragms, left and right kidneys, and liver were then segmented automatically via deep learning prior to architectural analysis. Architectural parameters (3D distances and angles from the centroids of multiple objects) at EE and EI of TIS patients and healthy children were computed and compared via t-testing. The distance between the right lung and right hemi-diaphragm is found to be significantly larger at EI than that at EE for TIS patients and healthy children, and after surgery becomes closer to that of healthy children.
|