You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
1 September 1990Characterization and optimization of infrared-imager detector response for long-path research
Many commercially available infrared imagers utilizing mercury-cadmium-telluride scanning detectors are not optimized for long pathlength atmospheric research. At imaging ranges of 1 or more kilometers, path radiance due to emissions from atmospheric constituents such as H20 and CO2 can be a significant contributor to a poor signal to noise ratio. Through proper doping of the detector and cold finger filtering, there is an increase in the magnitude of the propagated, system weighted target radiance and a much more favorable ratio of propagated target to path radiance which directly affects the image quality. Thus, it is necessary when optimizing an imaging system to consider both atmospheric path radiance and detector response. This paper presents a methodology which has resulted in a computer program which provides such optimizations. A first generation modification has been developed at the Atmospheric Sciences Laboratory and preliminary results show an enhancement of target to background apparent temperature or delta T in the 8 to 12 micron region. In the 3 to 5 micron region, it was readily apparent that the modification did not achieve the desired results (especially during winter weather conditions). In order to provide a solution to this problem, a technique was developed to characterize the detector response without the necessity of its removal from the system.
The alert did not successfully save. Please try again later.
Frank T. Kantrowitz, Wendell R. Watkins, Daniel R. Billingsley, Fernando R. Palacios, "Characterization and optimization of infrared-imager detector response for long-path research," Proc. SPIE 1311, Characterization, Propagation, and Simulation of Infrared Scenes, (1 September 1990); https://doi.org/10.1117/12.21860